139

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]
Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.11

BS

04/01/22

CONTINUOUS INTERNAL EVALUATION - 1

Dept:BS (MAT)	Committee of the second	Sub: Calculus and Differential Equations	S Code: 21MAT11
Date: 11/01/22	Time: 9:30-11:00	Max Marks: 40	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Q)	1	Questions	Marks	RBT	CO's	
	PARTA					
1	a	Prove with usual notations, $\tan \phi = r \frac{d \theta}{dr}$	6	L1	CO1	
and a		Find the angle between the two curves $r^2 \sin 2\theta = 4$ and $r^2 = 16 \sin 2\theta$	7	L1	CO1	
	C	Find the Pedal equation for the curve $\frac{l}{r} = 1 + e \cos \theta$	7	L2	CO1	
OR						
2	a	Show that the two curves $r'' = a'' \cos n \theta$ and $r'' = b'' \sin n \theta$ are orthogonal to each other	6	L2	CO1	
	Ь	Find the angle between the two curves $r = a \log \theta$ and $r = \frac{a}{\log \theta}$	7	L1	CO1	
	С	Find the Pedal equation for the curve $r^m = a^m(cosm\theta + sinm\theta)$	7	L1	CO1	
	PART B					
3	a	Find the radius of curvature at any point on the curve $x=a\log(\sec t + \tan t)$, $y=a\sec t$	6	L2	CO1	

Show that the radius of curvature at any point of the cardiode $r=a(1-\cos\theta)$ varies as \sqrt{r}	ie 7	L2	CO1				
Find the radius of curvature at the point $(\frac{3a}{2}, \frac{3a}{2})$ for the curve $x^3 + y^3 = 3axy$	or	7 L2	CO1				
OR							
4 a Find the radius of curvature at any point θ on the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$	ie 6	5 L2	CO1				
b Find the radius of curvature at any point for the polar curve $r^n = a^n \sin \theta$	ır 7	L2	CO1				
c Prove that for the parabola $y^2 = 4ax$, the square of the radius of curvature at any point varies as the cube of the focal distance of the point.		L2	CO1				

Prepared by: Prof. Madhavi R Pai

HOD: Prof. M Ramananda Kamath